© 2019 by Julian G.West Proudly created with Wix.com

Publications.

Fortune Favors the Well Read

Julian G. West

A contribution to Science's "Working Life" series describing how maintaining a broad knowledge across disciplines is essential to the pursuit of research.

Science, 2017, 355, 1090.

Development of a Bio-Inspired Dual Catalytic System for Alkane Dehydrogenation

Julian G. West* and Erik J. Sorensen*

The alkene is a central functional group in organic synthesis. While myriad reliable methods exist to access this moiety from other functionalities, acceptorless dehydrogenation, or the direct synthesis of alkenes from alkanes with hydrogen gas as the sole byproduct, remains a challenging, albeit highly desirable, transformation. This essay provides an account of our recent efforts toward accessing this difficult reaction class, with particular attention paid to the diverse precedents that informed our explorations. This report highlights the benefits of maintaining a broad range of interests, and we hope that it illustrates the vast connectivity between chemical disciplines.

Isr. J. Chem. 2017, 57, 259-269

Toward a mild dehydroformylation using base-metal catalysis

Dylan J. Abrams, Julian G. West, and Erik J. Sorensen*

Dehydroformylation, or the reaction of aldehydes to produce alkenes, hydrogen gas, and carbon monoxide, is a powerful transformation that is underdeveloped despite the high industrial importance of the reverse reaction, hydroformylation. Interestingly, nature routinely performs a related transformation, oxidative dehydroformylation, in the biosynthesis of cholesterol and related sterols under mild conditions using base-metal catalysts. In contrast, chemists have recently developed a non-oxidative dehydroformylation method; however, it requires high temperatures and a precious-metal catalyst. Careful study of both approaches has informed our efforts to design a base-metal catalyzed, mild dehydroformylation method that incorporates benefits from each while avoiding several of their respective disadvantages. Importantly, we show that cooperative base metal catalysis presents a powerful, mechanistically unique approach to reactions which are difficult to achieve using conventional catalyst design.

Chem. Sci. 2017, 8, 1954–1959.

The Uranyl Cation as a Visible-Light Photocatalyst for C(sp3)−H Fluorination

Julian G. West, T. Aaron Bedell, and Erik J. Sorensen*

The fluorination of unactivated C(sp3)−H bonds remains a desirable and challenging transformation for pharmaceutical, agricultural, and materials scientists. Previous methods for this transformation have used bench-stable fluorine atom sources; however, many still rely on the use of UV-active photocatalysts for the requisite high-energy hydrogen atom abstraction event. Uranyl nitrate hexahydrate is described as a convenient, hydrogen atom abstraction catalyst that can mediate fluorinations of certain alkanes upon activation with visible light.

 Angew. Chem. Int. Ed. 2016, 55, 8923–8927.  

Design and synthesis of molecular scaffolds with anti-infective activity

Junjia Liu, T. Aaron Bedell, Julian G. West, and Erik J. Sorensen*

The discovery and development of new anti-infectives is an important contemporary challenge to modern society. This challenge must be met with matching creativity and enthusiasm by chemists to avoid losing the battle with emerging strains of drug-resistant microbes. A series of case studies from our lab are presented, demonstrating our continued efforts in the areas of synthetic design, total synthesis of natural products, structure revision, and bioactive scaffold diversification. Together, these are used to highlight the power and utility of chemical synthesis to uniquely address challenges in the discovery and development of novel antibiotic compounds, particularly within the context of natural products scaffolds.

Tetrahedron, 2016, 72, 3579–3592.

The Diels–Alder Cycloaddition Reaction in the Context of Cascade Processes

Julian G. West and Erik J. Sorensen*

Contributed chapter to the Science of Synthesis Reference Library Collection "Applications of Domino Transformations in Organic Synthesis" edited by Prof. Scott A. Snyder.

The Diels–Alder cycloaddition has been a key component in innumerable, creative domino transformations in organic synthesis. This chapter provides examples of how this [4+2] cycloaddition has been incorporated into the said cascades, with particular attention to its interplay with the other reactions in the sequence. We hope that this review will assist the interested reader to approach the design of novel cascades involving the Diels–Alder reaction

Science of Synthesis, (S.A. Snyder Ed), Georg Thieme Verlag, 2016; pp 1–46.

Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis

Julian G. West, David Huang, and Erik J. Sorensen*

The dehydrogenation of unactivated alkanes is an important transformation both in industrial and biological systems. Recent efforts towards this reaction have revolved around high temperature, organometallic C–H activation by noble metal catalysts that produce alkenes and hydrogen gas as the sole products. Conversely, natural desaturase systems proceed through stepwise hydrogen atom transfer at physiological temperature; however, these transformations require a terminal oxidant. Here we show combining tetra-n-butylammonium decatungstate (TBADT) and cobaloxime pyridine chloride (COPC) can catalytically dehydrogenate unactivated alkanes and alcohols under near-UV irradiation at room temperature with hydrogen as the sole by-product. This noble metal-free process follows a nature-inspired pathway of high- and low-energy hydrogen atom abstractions. The hydrogen evolution ability of cobaloximes is leveraged to render the system catalytic, with cooperative turnover numbers up to 48 and yields up to 83%. Our results demonstrate how cooperative base metal catalysis can achieve transformations previously restricted to precious metal catalysts.

Nature Commun. 2015, 6, 10093

Direct C-F Bond Formation Using Photoredox Catalysis

Montserrat Rueda-Becerril, Olivier Mahé, Myriam Drouin, Marek B. Majewski, Julian G. West, Michael O. Wolf, Glenn M. Sammis,* and Jean-François Paquin*

We have developed the first example of a photoredox catalytic method for the formation of carbon–fluorine (C–F) bonds. The mechanism has been studied using transient absorption spectroscopy and involves a key single-electron transfer from the 3MLCT (triplet metal-to-ligand charge transfer) state of Ru(bpy)32+ to Selectfluor. Not only does this represent a new reaction for photoredox catalysis, but the mild reaction conditions and use of visible light also make it a practical improvement over previously developed UV-mediated decarboxylative fluorinations.

J. Am. Chem. Soc. 2014, 136, 2637–2641.

Photo‐fluorodecarboxylation of 2‐Aryloxy and 2‐Aryl Carboxylic Acids

Joe C.T. Leung, Claire Chatalova-Sazepin, Julian G. West, Montserrat Rueda-Becerril, Jean-François Paquin,* and Glenn M. Sammis*

Coming to light: The title reaction simply requires an aqueous alkaline solution of Selectfluor and light. The method is inexpensive and effective for a wide range of neutral and electron‐poor 2‐aryloxy and 2‐aryl acetic acids to provide fluoromethyl ethers (see scheme) and benzyl fluorides, respectively. The mechanism most likely proceeds through an initial aryl excitation with a subsequent single‐electron transfer.

Angew. Chem. Int. Ed. 2012, 43, 10804–10807.

  • White Twitter Icon